Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.137$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-[6-(4-Methoxyphenyl)-7H-1,2,4-triazolo-[3,4-b][1,3,4]thiadiazin-3-yl]propan-1-ol

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, the six-membered thiadiazine ring adopts a distorted boat conformation. $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into centrosymmetric dimers and enhance the stability of the crystal structure.

Comment

As potentially biologically active reagents, 3,6-disubstituted$7 H-1,2,4$-triaozlo[3,4-b][1,3,4]thiadiazines have received considerable attention over the past two decades (Zhou et al., 2006; Nadkarni et al., 2001). Triazoles fused with thiadiazines have been shown to exhibit antimicrobial (Feng et al., 1992) and diuretic properties (Mohan \& Anjaneyulu, 1987) and to act as photographic couplers (Holla et al., 2001). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1 and Table 1), the five-membered triazole ring is conjugated. The six-membered thiadiazine ring adopts a distorted boat conformation. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) link the molecules into pairs around a center of symmetry (Fig. 2), enhancing the stability of the crystal structure.

Experimental

Carbon disulfide (13 ml) and hydrazine hydrate (24 ml) mixed with water (75 ml) were refluxed for 1 h at 363 K to form thiocarbohydrazide. 1,4-Butyrolactone (0.01 mol) and thiocarbohydrazide (0.01 mol) were refluxed in pyridine $(40 \mathrm{ml})$ for 4 h to obtain 4 -amino-5-mercapto-3-(3-hydroxypropyl)-1,2,4-triazole, (II), following the method of Xiong et al. (2002). To a solution of (II) (0.01 mol) in absolute ethanol (20 ml), was added 2-bromo-1-(4-methoxyphenyl)ethanone (0.01 mol). The mixture was refluxed for 7 h . The solid

Received 10 October 2006
Accepted 10 November 2006

[^0]obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give (I). The purified product was dissolved in 95% ethanol and single crystals were obtained after 4 d .

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=304.38$
Monoclinic, $P 2_{1} / c$
$a=7.6166$ (7) A
$b=12.8582(12) \AA$
$c=15.9198$ (13) \AA
$\beta=111.228(4)^{\circ}$
$V=1453.3$ (2) \AA^{3}

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.944, T_{\text {max }}=0.959$

$Z=4$

$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation $\mu=0.23 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.25 \times 0.17 \times 0.16 \mathrm{~mm}$

7493 measured reflections 2556 independent reflections 2288 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.137$
$S=1.20$
2556 reflections
191 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0504 P)^{2}\right. \\
& \quad+0.734 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C10	$1.731(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.367(3)$
S1-C9	$1.808(3)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.297(3)$
N1-C8	$1.283(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.403(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.393(3)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.299(3)$
N2-C11	$1.365(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.510(4)$
$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 9$	$95.36(13)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9$	$118.9(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 2$	$116.2(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{S} 1$	$113.99(19)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10$	$105.4(2)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{N} 2$	$110.7(2)$
C11-N2-N1	$124.2(2)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{S} 1$	$128.8(2)$
C10-N2-N1	$129.8(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 1$	$120.42(19)$
C10-N3-N4	$106.3(2)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{N} 2$	$109.4(2)$
C11-N4-N3	$108.2(2)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$	$127.0(2)$
N1-C8-C5	$116.6(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$123.6(2)$
N1-C8-C9	$124.3(2)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.82	2.08	$2.892(3)$	173

Symmetry code: (i) $-x+2,-y+1,-z+1$.
All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Cs} p^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom), Csp $p^{3}-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}=1.5 U_{\text {eq }}$ (parent atom) and $\mathrm{O}-\mathrm{H}=0.82 \AA$ with $U_{\text {iso }}=1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
The molecular structure of (I) with the atom numbering, showing displacement ellipsoids at the 30% probability level.

Figure 2
Packing diagram for (I), showing the hydrogen-bonded (dashed lines) dimers.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194. Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Il Farmaco, 56, 919927.

organic papers

Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Nadkarni, B. A., Kamat, V. R. \& Khadse, B. G. (2001). Arzneim. Forsch. 51, 569-573.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xiong, Y., Zhang, L. X., Zhang, A. J. \& Xu, D. J. (2002). Synth. Commun. 32, 3455-3459.
Zhou, S.-N., Zhang, L.-X., Jin, J.-Y., Xiao, H.-P. \& Zhang, A.-J. (2006). Acta Cryst. E62, o605-o606.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

